📝 Edit page
➕ Add page
Matplotlib
Visualization with Python
Installation
See Installing doc for other options.
$ pip install matplotlib
Imports
import matplotlib.pyplot as plt
import numpy as np
Line graph
From Usage tutorial and plot method docs.
Simple plot
plot(x, y) # plot x and y using default line style and color
plot(x, y, 'bo') # plot x and y using blue circle markers
plot(y) # plot y using x as index array 0..N-1
plot(y, 'r+') # ditto, but with red plusses
e.g.
x = [1, 2, 3, 4]
y = [1, 4, 2, 3]
fig, ax = plt.subplots()
ax.plot(x, y)
# Or in one line:
plt.plot(x, y)
Multiple lines on a plot
x = np.linspace(0, 2, 100)
plt.plot(x, x, label='linear')
plt.plot(x, x**2, label='quadratic')
plt.plot(x, x**3, label='cubic')
plt.xlabel('x label')
plt.ylabel('y label')
plt.title("Simple Plot")
plt.legend()
How to run Matplotlib
See Backends in the docs.
- Run Jupyter notebooks and draw inline plots for quick data analysis.
- Embed plots into GUIs like PyQt or PyGObject to build rich applications.
- Use batch scripts to generate postscript images from numerical simulations.
- Run web application servers to dynamically serve up graphs.